The structure of some 2-groups
and the capitulation problem for certain biquadratic fields

Abdelmalek Azizi\(^1\) and Mohammed Talbi\(^2\)

\(^1\) ACSA Laboratory, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco.
\(^2\) Regional Center for Education and Training, Oujda, Morocco.

Abstract. We study the capitulation problem for certain number fields \(K\) of degree 4 and we show how we can determine the structures of some 2-groups as an application of this study. Let \(K_1^{(2)}\) be the Hilbert 2-class field of \(K\), \(K_2^{(2)}\) be the Hilbert 2-class field of \(K_1^{(2)}\), \(C_{K,2}\) be the 2-component of the ideal class group of \(K\) and \(G_2\) the Galois group of \(K_2^{(2)}/K\). We suppose that \(C_{K,2}\) is of type \((2,2)\); then \(K_1^{(2)}\) contains three extensions \(F_i/K\), \(i = 1, 2, 3\). The aim of this paper is to study the capitulation of the 2-ideal classes in \(F_i\), \(i = 1, 2, 3\), and as an application of this study, to determine the structure of \(G_2\) and the structure of the 2-class group of the three fields \(F_i\), \(i = 1, 2, 3\), for the following cases:

(I) \(K = \mathbb{Q}(\sqrt{2q_1q_2}, i)\) where \(q_1\) and \(q_2\) are primes such that \(q_1 \equiv q_2 \equiv -1 \mod 4\). This is a case of biquadratic bicyclic number fields of \(\mathbb{Q}\).

(II) \(K = \mathbb{Q}(\sqrt{-pq(2 + \sqrt{2})})\) where \(p\) and \(q\) are primes such that \(p \equiv -q \equiv 5 \mod 8\). This is a case of quartic number fields of \(\mathbb{Q}\).

Key words: unit, class group, capitulation, Hilbert class field.

1. Intoduction

Let \(K\) be a number field of finite degree over \(\mathbb{Q}\) and \(C_K\) be the class group of \(K\). Let \(F\) be an unramified extension of \(K\) of finite degree and let \(O_F\) be its ring of integers. We say that an ideal \(\mathcal{A}\) (or the ideal class of \(\mathcal{A}\)) of \(K\) capitulates in \(F\) if it becomes principal in \(F\), i.e., if \(\mathcal{A}O_F\) is principal in \(F\). The Hilbert class field \(K_1\) of \(K\) is the maximal abelian unramified extension of \(K\). Let \(p\) be a prime number; the Hilbert \(p\)-class field \(K_1^{(p)}\) of \(K\) is the maximal abelian unramified
extension of K such that $[K_1^{(p)} : K] = p^n$ for some integer n. The first important result on capitulation was conjectured by D. Hilbert and proved by E. Artin and P. Furtwängler. It deals with the case $F = K_1$.

Theorem 1 (Principal ideal theorem). Let K_1 be the Hilbert class field of K, then every ideal of K capitulates in K_1.

The principal ideal theorem was generalized by Tannaka and Terada to the next one. Let K_0 be a subfield of K such that K/K_0 is abelian and let $(K/K_0)^*$ be the relative genus field of K/K_0.

Theorem 2 (Tannaka–Terada). If K/K_0 is cyclic, then any ambiguous ideal class of K/K_0 is principal in $(K/K_0)^*$.

The case where F/K is a cyclic extension of prime degree was studied by D. Hilbert in his Theorem 94:

Theorem 3 (Theorem 94). Let F/K be a cyclic extension of prime degree, then there exists at least one class (not trivial) in K which capitulates in F.

We find in the proof of Theorem 94 this result:

Let σ be a generator of the Galois group of F/K and $N_{F/K}$ be the norm of F/K. Let E_F be the unit group of the field F. Let E_F^* be the group of units of norm 1 in F/K. Then the group of classes of K which capitulates in F is isomorphic to the quotient group $E_F^*/E_F^{1-\sigma} = H^1(G,F)$, the cohomology group of $G = \langle \sigma \rangle$ acting on the group E_F.

With this result and other results on cohomology, we have:

Theorem 4 ([11]). Let F/K be a cyclic unramified extension of prime degree, then the number of classes which capitulate in F/K is equal to

$$[F : K][E_K : N_{F/K}(E_F)],$$

where E_K (resp. E_F) is the unit group of K (resp. F).

The case where F/K is an abelian extension was treated by H. Suzuki who has proved Miyake’s conjecture: In an abelian extension F/K the number of classes of K which capitulates in F is a multiple of $[F : K]$.

Moreover, H. Suzuki has proved the next theorem which is a generalization of the principal ideal theorem, the Hilbert theorem 94 and Tannaka-Terada’s principal ideal theorem:

Theorem 5. Let K be a finite cyclic extension of an algebraic number field K_0 of finite degree, and let F be an unramified extension of K which is abelian over K_0. Then the number of the $G(K/K_0)$-invariant ideal classes of K which become principal in F is divisible by the degree $[F : K]$ of the extension F/K.

Frontiers in Science and Engineering
An International Journal Edited by Hassan II Academy of Science and Technology
Let p be a prime number and let $K_1^{(p)}$ (resp. $K_2^{(p)}$) be the Hilbert p-class field of K (resp. of $K_1^{(p)}$). If L is a subfield of K_1 and A is an ideal class of K whose order is equal to p^m for some integer m, then A capitulates in L if and only if A capitulates in $L \cap K_1^{(p)}$. So we study only the capitulation of classes whose orders are equal to p^m in the subfields of $K_1^{(p)}$, and since the capitulation problem is solved when $K_1^{(p)}/K$ is cyclic, we study only the cases where $K_1^{(p)}/K$ is not cyclic.

For more details see [18], [20], [1] and [21].

Definition 6. Let F be a cyclic unramified extension of K, C_F be its class field and j the application of C_K in C_F that maps to the class of an ideal α of K, the class of the ideal generated by α in F. Then the extension F/K is called:

- of type (A) if and only if $\# \ker j \cap N_{F/K}(C_F) > 1$;
- of type (B) if and only if $\# \ker j \cap N_{F/K}(C_F) = 1$.

Proposition 7 ([14]). Let G be a 2-group of finite order 2^m and G' its derived subgroup. Then G/G' is of type $(2, 2)$ if and only if G is isomorphic to one of 2-groups:

$$
Q_m = \langle \sigma, \tau \rangle \quad o \quad \sigma^{2m-2} = \tau^2 = a, \quad a^2 = 1, \quad \tau^{-1} \sigma \tau = \sigma^{-1};
$$
$$
D_m = \langle \sigma, \tau \rangle \quad o \quad \sigma^{2m-1} = \tau^2 = 1, \quad \tau^{-1} \sigma \tau = \sigma^{-1};
$$
$$
S_m = \langle \sigma, \tau \rangle \quad o \quad \sigma^{2m-1} = \tau^2 = 1, \quad \tau^{-1} \sigma \tau = \sigma^{-1};
$$
$$
(2, 2) = \langle \sigma, \tau \rangle \quad o \quad \sigma^2 = \tau^2 = 1, \quad \tau^{-1} \sigma \tau = \sigma.
$$

Where Q_m the quaternion group, D_m the dihedral group, S_m semi-dihedral group of order 2^m and $(2, 2)$ is an abelian group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Let K be a number field such that the 2-component $C_{K,2}$ of C_K is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let G_2 be the Galois group of $K_2^{(2)}/K$. By class field theory, $Gal(K_1^{(2)}/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then $K_1^{(2)}$ contains three quadratic extensions of K denoted by F_1, F_2, and F_3; precisely F_1 is the subfield of $K_2^{(2)}$ left fixed by the subgroup $\langle \sigma \rangle$, F_2 is the subfield of $K_2^{(2)}$ left fixed by the subgroup $\langle \sigma^2, \tau \rangle$ and F_3 is the subfield of $K_2^{(2)}$ left fixed by the subgroup $\langle \sigma^2, \sigma \tau \rangle$. Furthermore, if $G_2' \neq 1$, then $K_1^{(2)} \neq K_2^{(2)}$ and there exists a unique subgroup of G_2 of index 2; let L be the subfield of $K_2^{(2)}$ left fixed by this subgroup and j_i the mapping j defined for $F = F_i$. Under these conditions, H. Kisilevsky, in [14], proved the following

Theorem 8 ([14]). Assume that $C_{K,2} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, so we have

1. If $K_2^{(1)} = K_2^{(2)}$, then the fields F_i are of type (A), $\# \ker j_i = 4$ for $i = 1, 2, 3$ and $G_2 \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$;

2. If $Gal(L/K) \simeq Q_3$, then the fields F_i are of type (A), $\# \ker j_i = 2$ for $i = 1, 2, 3$ and $G_2 \simeq Q_3$.
3. If \(\text{Gal}(L/K) \simeq D_3 \), then the fields \(F_2 \) and \(F_3 \) are of type (B) and \(\# \ker j_2 = \# \ker j_3 = 2 \). Moreover, if \(F_1 \) is of type (B) then \(\# \ker j_1 = 2 \) and \(G_2 \simeq S_m \). If \(F_1 \) is of type (A) and \(\# \ker j_1 = 2 \), then \(G_2 \simeq Q_m \). Finally if \(F_1 \) is of type (A) and \(\# \ker j_1 = 4 \), then \(G_2 \simeq D_m \).

Corollary 9. Let \(K \) be such that \(C_{K,2} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \). Then we have three types of capitulation:

- **Type 1:** The four classes of \(C_{K,2} \) capitulate in each extension \(F_i \), \(i = 1, 2, 3 \).
- **Type 2:** The four classes of \(C_{K,2} \) capitulate only in one extension among the three extensions \(F_i \), \(i = 1, 2, 3 \). In this case the group \(G_2 \) is dihedral.
- **Type 3:** Only two classes capitulate in each extension \(F_i \), \(i = 1, 2, 3 \). In this case the group \(G_2 \) is semi-dihedral or quaternionic.

Remark 10. The 2-class group of \(F_1 \) is cyclic. The 2-class groups of \(F_2 \) and \(F_3 \) are cyclic in the cases 1 and 2 of the theorem 8 and are of type (2, 2) in the third case.

2. Units of some number fields

Let \(d_1 \), \(d_2 \) be coprime integers, which are square-free, \(d_3 = d_1d_2 \), \(\varepsilon_1 \) (resp. \(\varepsilon_2, \varepsilon_3 \)) the fundamental unit of \(\mathbb{Q}(\sqrt{d_1}) \) (resp. \(\mathbb{Q}(\sqrt{d_2}), \mathbb{Q}(\sqrt{d_3}) \)), \(K_0 = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2}), Q_{K_0} \) the Hasse unit index of \(K_0 \) and \(N_i \) the norm of \(K_0/Q_{i}^{(2)} \) with \(i \in \{1, 2, 3\} \).

From [15], we know that a fundamental system of units of \(K_0 \) is one of the following:

- \(\{\varepsilon_1, \varepsilon_2, \varepsilon_3\} \);
- \(\{\varepsilon_1, \varepsilon_2, \sqrt{\varepsilon_3}\} \) \(\left(N_2(\varepsilon_3) = 1 \right) \);
- \(\{\sqrt{\varepsilon_1}\varepsilon_2, \varepsilon_2, \varepsilon_3\} \) \(\left(N_3(\varepsilon_1) = N_3(\varepsilon_2) = 1 \right) \);
- \(\{\varepsilon_1, \sqrt{\varepsilon_2}, \sqrt{\varepsilon_3}\} \) \(\left(N_1(\varepsilon_2) = N_1(\varepsilon_3) = 1 \right) \);
- \(\{\sqrt{\varepsilon_1}\varepsilon_2, \sqrt{\varepsilon_2}\varepsilon_3, \sqrt{\varepsilon_1}\varepsilon_3\} \) \(\left(N_2(\varepsilon_3) = N_3(\varepsilon_j) = 1, j = 1, 2 \right) \);
- \(\{\sqrt{\varepsilon_1}\varepsilon_2, \sqrt{\varepsilon_3}, \varepsilon_2, \varepsilon_3\} \) \(\left(N_3(\varepsilon_1) = N_3(\varepsilon_2) = N_3(\varepsilon_3) = \pm 1 \right) \).

Proposition 11 ([2]). Let \(K_0 \) a real number field, \(F = K_0(\sqrt{-1}) \) a quadratic extension of \(K_0 \), abelian and finite over \(\mathbb{Q} \) and \(\{\varepsilon_1, \varepsilon_2,, \varepsilon_r\} \) be a fundamental system of units of \(K_0 \) (whose units are all positive). Then we have:

1. If there is a unit of \(K_0 \) of the form \(\varepsilon = \varepsilon_1^{j_1}\varepsilon_2^{j_2}....\varepsilon_{r-1}^{j_{r-1}}\varepsilon_r \) where \(j_k \in \{0, 1\} \), such that \((2 + \mu_m)\varepsilon \) is a square in \(K_0 \), then \(\{\varepsilon_1, \varepsilon_2,, \varepsilon_{r-1}, \sqrt{\varepsilon} \} \) is a fundamental system of units of \(F \);

2. Otherwise \(\{\varepsilon_1, \varepsilon_2,, \varepsilon_r\} \) is a fundamental system of units of \(F \).

Proposition 12 ([2]). Let \(K_0 \) a number field, abelian real and \(\beta \) an algebraic integer in \(K_0 \), completely positive, without square factors. Assume that \(F = K_0(\sqrt{-1}) \) is a quadratic extension of \(K_0 \), abelian over \(\mathbb{Q} \) and \(i = \sqrt{-1} \) doesn’t belong to \(F \). Let \(\{\varepsilon_1, \varepsilon_2,, \varepsilon_r\} \) be a fundamental system of units of \(K_0 \). We choose, without limiting the generality, units \(\varepsilon_j \) positive. Then we have:

1. If there is a unit of \(K_0 \) such that \(\varepsilon = \varepsilon_1^{j_1}\varepsilon_2^{j_2}....\varepsilon_{r-1}^{j_{r-1}}\varepsilon_r \) (close to a permutation), where the \(j_k \in \{0, 1\} \), such that \(\beta\varepsilon \) is a square in \(K_0 \), then \(\{\varepsilon_1, \varepsilon_2,, \varepsilon_{r-1}, \sqrt{-\varepsilon} \} \) is a fundamental system of units of \(F \);
Lemma 16. Therefore, if $\varepsilon^2 \equiv 1 \pmod{d}$ are congruent to q of this paragraph, then $\{\varepsilon\}$ is a fundamental system of units of L.

Corollary 13 ([7]). Let $L = \mathbb{Q}(\sqrt{-n\varepsilon\sqrt{d}})$ be a cyclic extension of degree 4 over \mathbb{Q}, where ε is the fundamental unit of $\mathbb{Q}(\sqrt{d})$ with d a square-free integer and n an integer, then $\{\varepsilon\}$ is a fundamental system of units of L.

Lemma 14 ([3], Theorem 14). Let p and q be odd prime numbers such as $q \equiv -1 \pmod{4}$, $K_0 = \mathbb{Q}(\sqrt{2}, \sqrt{pq})$, $F = K_0(i)$ and ε_1 (resp. ε_2, ε_3) be the fundamental unit of $\mathbb{Q}(\sqrt{2})$ (resp. $\mathbb{Q}(\sqrt{pq})$, $\mathbb{Q}(\sqrt{2pq})$). Assume that $2\varepsilon_3$ is not a square in $\mathbb{Q}(\sqrt{pq})$ and $\varepsilon_2 = x + y\sqrt{pq}$ with $(x, y) \in \mathbb{Z}^2$. Then we have:

(i) If $x \pm 1$ is a square in \mathbb{N}, then $\{\varepsilon_1, \sqrt{\varepsilon_2}, \sqrt{\varepsilon_3}\}$ is a fundamental system of units of K_0 and of F.

(ii) Otherwise, $\{\varepsilon_1, \varepsilon_2, \sqrt{\varepsilon_2\varepsilon_3}\}$ is a fundamental system of units of K_0 and of F.

Lemma 15 ([3], Theorem 14). We keep the notations of the previous lemma and assume that p and q are congruent to -1 modulo 4, and that $2\varepsilon_3$ is not a square in $\mathbb{Q}(\sqrt{pq})$ and $\varepsilon_2 = x + y\sqrt{pq}$ with x and y be two odd integers. Then K_0 and F have the same fundamental system of units.

Lemma 16. Let p, q be odd prime numbers, $K_0 = \mathbb{Q}(\sqrt{q}, \sqrt{2p})$, ε_1 (resp. ε_2, ε_3) the fundamental unit of $\mathbb{Q}(\sqrt{q})$ (resp. $\mathbb{Q}(\sqrt{2p})$, $\mathbb{Q}(\sqrt{2pq})$). Assume that all units ε_i are of norm 1 and $2\varepsilon_3$ is not a square in $\mathbb{Q}(\sqrt{2pq})$. We set $\varepsilon_3 = x + y\sqrt{2pq}$. Then a fundamental system of units of K_0 is

(i) $\{\sqrt{\varepsilon_1\varepsilon_3}, \sqrt{\varepsilon_1\varepsilon_2}, \sqrt{\varepsilon_2\varepsilon_3}\}$ if $2p(x \pm 1)$ is a square in \mathbb{N}.

(ii) $\{\varepsilon_1, \sqrt{\varepsilon_1\varepsilon_2}, \sqrt{\varepsilon_3}\}$ if $2q(x \pm 1)$ is a square in \mathbb{N}.

Proof. Let $\varepsilon_3 = x + y\sqrt{2pq}$ such that $(x - 1)(x + 1) = 2pqy^2$. We know that $2\varepsilon_3$ is a square in $\mathbb{Q}(\sqrt{2pq})$ if and only if $x \pm 1$ is a square in \mathbb{N}.

- If $2(x \pm 1)$ is a square in \mathbb{N}, then there exists $(y_1, y_2) \in \mathbb{Z}^2$ such that
 \[
 \begin{cases}
 x \pm 1 = 2y_1^2 \\
 x \mp 1 = pqy_2
 \end{cases}
 \quad \text{and} \quad
 \varepsilon_3 = \frac{1}{2}(y_2\sqrt{2pq} + 2y_1) \in \mathbb{Q}(\sqrt{2pq}).
 \]
 This is contrary to the fact that ε_3 is the fundamental unit of $\mathbb{Q}(\sqrt{2pq})$. Following $2p(x \pm 1)$ or $2q(x \pm 1)$ is a square in \mathbb{N}.

- If $2p(x \pm 1)$ is a square in \mathbb{N}, then $q(x \mp 1)$ is a square in \mathbb{N} and there exists $(y_1, y_2) \in \mathbb{Z}^2$ such that
 \[
 \begin{cases}
 x \pm 1 = 2y_1^2 \\
 x \mp 1 = pqy_2
 \end{cases}
 \quad \text{and} \quad
 \varepsilon_3 = \frac{1}{2}(y_2\sqrt{2pq} + 2y_1) \in \mathbb{Q}(\sqrt{2pq}).
 \]

Therefore, if $2p(x \pm 1)$ is a square in \mathbb{N}, then $2\varepsilon_3$ is a square in K_0 and if $2q(x \pm 1)$ is a square in \mathbb{N}, then ε_3 is a square in K_0. On the other hand, after the two previous lemmas, $2\varepsilon_1$ and $2\varepsilon_2$ are squares in K_0. Hence $\varepsilon_1\varepsilon_2$ is a square in K_0. Similarly, if $2\varepsilon_3$ is a square in K_0, then $\varepsilon_1\varepsilon_3$ and $\varepsilon_2\varepsilon_3$ are squares in K_0 and thus is a fundamental system of units of K_0. In the case where ε_3 is a square in K_0, the unit $\varepsilon_1\varepsilon_2\varepsilon_3$ is a square in K_0 and according to the results of [15] recalled the beginning of this paragraph, $\{\varepsilon_1, \sqrt{\varepsilon_1\varepsilon_2}, \sqrt{\varepsilon_3}\}$ is a fundamental system of units of K_0. \[\square\]
Lemma 17. With the conditions of Lemma 16. Let \(F = K_0(i) \), then

(i) if \(2p(x \pm 1) \) is a square in \(\mathbb{N} \), then \(\left\{ \sqrt{\varepsilon_1 \varepsilon_2}, \sqrt{\varepsilon_3}, \sqrt{i \varepsilon_2 \varepsilon_3} \right\} \) is a fundamental system of units of \(F \);

(ii) if \(2q(x \pm 1) \) is a square in \(\mathbb{N} \), then \(\left\{ \sqrt{\varepsilon_1 \varepsilon_2}, \sqrt{\varepsilon_3}, \sqrt{i \varepsilon_2} \right\} \) is a fundamental system of units of \(F \).

Proof. (i) Let \(\varepsilon = \sqrt{\varepsilon_1 \varepsilon_2} \sqrt{\varepsilon_1 \varepsilon_3} \sqrt{\varepsilon_2 \varepsilon_3} = \varepsilon_1 \left(\sqrt{\varepsilon_2 \varepsilon_3} \right)^2 \). We know from Proposition 11 that \(\sqrt{\varepsilon} \in F \) if and only if \(\sqrt{2 \varepsilon} \in K_0 \). Since \(2 \varepsilon_1 \) is a square in \(K_0 \), then \(2 \varepsilon \) is a square in \(K_0 \). A fundamental system of units of \(K_0 \) is given by the preceding lemma. Hence, by Proposition 11, \(\left\{ \sqrt{\varepsilon_1 \varepsilon_2}, \sqrt{\varepsilon_1 \varepsilon_3}, \sqrt{i \varepsilon_1 \varepsilon_2 \varepsilon_3} \right\} \) is a fundamental system of units of \(F \).

(ii) Let \(\varepsilon = \varepsilon_2 \). We know from Lemma 16 that \(2 \varepsilon_2 \) is a square in \(K_0 \) and Lemma 17 gives us a fundamental system of units of \(K_0 \). So while using Proposition 11, we find that \(\left\{ \sqrt{i \varepsilon_1 \varepsilon_2}, \sqrt{\varepsilon_3}, \sqrt{i \varepsilon_2} \right\} \) is a fundamental system of units of \(F \).

\[\square \]

Theorem 18 ([6]). Let \(K_0 = \mathbb{Q}(\sqrt{2}, \sqrt{p}), \varepsilon_0 \) (resp. \(\varepsilon_2, \varepsilon_3 \)) the fundamental unit of \(\mathbb{Q}(\sqrt{2}) \) (resp. \(\mathbb{Q}(\sqrt{p}) \), \(\mathbb{Q}(\sqrt{2p}) \)) and \(F = K_0(\sqrt{1 - m \varepsilon_0 \sqrt{2}}) \) where \(m \) is an odd integer. Then,

1) if \(\varepsilon_3 \) has norm 1, then \(\left\{ \varepsilon_0, \varepsilon_2, \sqrt{\varepsilon_3} \right\} \) is a fundamental system of units of \(K_0 \) and of \(F \);

2) otherwise, \(\left\{ \sqrt{\varepsilon_0 \varepsilon_2 \varepsilon_3}, \varepsilon_2, \varepsilon_3 \right\} \) is a fundamental system of units of \(K_0 \) and of \(F \).

Theorem 19. Let \(L = \mathbb{Q}(\sqrt{2} + \sqrt{2}) \) and \(F = L(\sqrt{1 - m}) \) where \(m \) is an odd integer and square-free. Then \(\left\{ \xi_3, \xi_5, \xi_7 \right\} \) is a fundamental system of units of \(L \) and of \(F \) where \(\xi_3 = 1 + \sqrt{2 + \sqrt{2}} \), \(\xi_5 = 1 + \sqrt{2 + \sqrt{2} + \sqrt{2}} \) and \(\xi_7 = 1 + \sqrt{2 + \sqrt{2} + \sqrt{2} + \sqrt{2}} \).

Proof. It is known in the literature that \(\left\{ \xi_3, \xi_5, \xi_7 \right\} \) is a fundamental system of units of \(L \) (see eg [24], p. 144-145). Since \(m \xi \) is not a square in \(L \), for \(\xi = \xi_1^{j_1} \xi_2^{j_2} \xi_3^{j_3} \) where \(\{\xi_1, \xi_2, \xi_3\} = \{\xi_3, \xi_5, \xi_7\} \) and \(j_1, j_2 \in \{0, 1\} \), then, according to the proposition 12, we find that the system \(\{\xi_3, \xi_5, \xi_7\} \) is a fundamental system of units of \(F \).

\[\square \]

3. Case where \(K \) is a biquadratic bicyclic number field of \(\mathbb{Q} \)

Let \(K \) be the Hasse unit index of \(K \) and let \(C_{K,2} \) be the 2-component of the class group of \(K \). Let \(K^{(w)} \) be the genus field of \(K \). In this section, we suppose that \(K = \mathbb{Q}(\sqrt{2q_1q_2}, i) \) where \(q_1 \equiv q_2 \equiv -1 \mod 4, \left(\frac{q_1}{q_2} \right) = -1, \left(\frac{2}{q_1} \right) = -1, \left(\frac{2}{q_2} \right) = 1 \) and \(Q = 1 \), in which case, the group \(C_{K,2} \) is of type \((2, 2) \) and \(K^{(w)} = K_1^{(2)} = \mathbb{Q}(\sqrt{q_1}, \sqrt{q_2}, \sqrt{2}, i) \). So \(K^{(2)}_1 \) contains three extensions \(F_i/K, i = 1, 2, 3 \). The aim of this section is to study the capitulation of the 2-ideal classes in \(F_i, i = 1, 2, 3 \), and to determine the structure of \(G_2 \). So we have:

\(F'_1 = K(\sqrt{q_1}) = \mathbb{Q}(\sqrt{q_1}, \sqrt{2q_2}, i), F'_2 = K(\sqrt{q_2}) = \mathbb{Q}(\sqrt{q_2}, \sqrt{2q_1}, i) \) and \(F'_3 = \sqrt{q_2}, i). \)
Theorem 20. Let \(K = \mathbb{Q}(\sqrt{2q_1q_2}, i) \) with \(\frac{q_1}{q_2} = \frac{q_2}{q_1} = \frac{2}{q_1} = \frac{2}{q_2} = 1 \) and the unit index \(Q \) of \(\mathbb{Q}(\sqrt{2q_1q_2}) \) in \(K \) is equal to 1. Then only two classes of \(K \) capitulate in each extension \(F'_i, i = 1, 2, 3 \) and the group \(G_2 \) is semi-dihedral or quaternionic.

Proof. To prove this theorem we will use the fact that in an unramified extension \(F/K \) of degree 2 the number of classes that capitulated in \(F \) is equal to \(2 | E_K : N_{F/K}(E_F) | \). Let \(\varepsilon_3 \) be the fundamental unit of \(\mathbb{Q}(\sqrt{2q_1q_2}) \), then \(E_K \), the unit group of \(K \), is generated by \(\varepsilon_3 \) and the complex number \(i \), so we must compute \(N_{F/K}(E_F) \) in each case of \(F(F = F'_i, i = 1, 2, 3) \).

On the other hand, let \(\varepsilon_2 = x + y \sqrt{q_1q_2} \) be the fundamental unit of \(\mathbb{Q}(\sqrt{q_1q_2}) \). Then

a) If \(x \) and \(y \) are integers, then exactly two classes of \(C_{K,2} \) capitulate in \(F'_1 \). It is the same for \(F'_2 \), while in \(F'_3 \) the 4 classes capitulate if and only if \(x \pm 1 \) is a square in \(\mathbb{N} \) (a fundamental system of \(F'_1 \) or \(F'_2 \) is given by lemma 2.3 and lemma 2.4 and for \(F'_3 \) is given by lemma 2.1 and lemma 2.2). Let us show that \(x \pm 1 \) is never a square of \(\mathbb{N} \).

Since \(q_1q_2 \equiv 1 \) mod 4, then \(x \) is odd. Therefore, the greatest common divisor of \(x - 1 \) and \(x + 1 \) is equal to two. Moreover, using the equation \((x - 1)(x + 1) = q_1q_2y^2 \), we deduce that the exponent of 2 in the decomposition of \(x - 1 \) and \(x + 1 \) into prime factors is odd. It follows that \(x \pm 1 \) can not be a square in \(\mathbb{N} \). Thus, our result is proved.

b) If \(x \) and \(y \) are half-integers. Then in each extension \(F'_i, (i \in \{1, 2, 3\}) \), exactly two classes of \(K \) capitulate. Indeed, in this case a fundamental system of units of \(K_3 \) and \(F'_3 \) is \(\{\varepsilon_1, \varepsilon_2, \sqrt{\varepsilon_2 \varepsilon_3}\} \).

Then we have that \(N(E_{F'_3}) = E_K \). As a result, there are two classes that capitulated in \(F'_3 \). It is the same for the extensions \(F'_1 \) and \(F'_2 \).

Then only two classes of \(K \) capitulate in each extension \(F'_i, i = 1, 2, 3 \). Therefore, by theorem 8 and corollary 9, \(G_2 \) is the quaternionic group or semi-dihedral group.

Theorem 21. Let \(K = \mathbb{Q}(\sqrt{2q_1q_2}, i) \) with \(\frac{q_1}{q_2} = \frac{q_2}{q_1} = \frac{2}{q_1} = \frac{2}{q_2} = 1 \) and the unit index \(Q \) of \(\mathbb{Q}(\sqrt{2q_1q_2}) \) in \(K \) is equal to 1. Let \(F'_1 = K(\sqrt{q_1}), F'_2 = K(\sqrt{q_2}) \) and \(F'_3 = K(\sqrt{2}) \), then the 2-class groups of \(F'_1 \) and \(F'_3 \) are of type \((2, 2) \) and the 2-class groups of \(F'_2 \) is cyclic.

Proof. Using Wada’s formula on class number of multiquadratic fields ([23]) and Kaplan’s results on the 2-part of class number of quadratic fields ([13]) then we have:
- \(h(q_1), h(q_2), h(2q_1), h(2q_2), h(-q_1), h(-q_2) \) et \(h(q_1q_2) \) are odd;
- the 2-part of \(h(-2q_2) \) is equal to 2, the 2-part of \(h(-2q_1) \) is divided by 4 and is divided by 8 if and only if \(q_1 \equiv 15 \) mod 16, and the 2-part of \(h(-q_1q_2) \) is equal to 4;
- let \(Q' \) be the index of the product of the units groups of all the quadratic fields which are subsets of \(F \) in the unit group of \(F \) (if \(F = F'_i \), then \(Q' = [E_{F'_i} : E_{-1}E_{q_1}E_{-q_1}E_{2q_2}E_{-2q_2}E_{2q_1q_2}E_{-2q_1q_2} \])

Frontiers in Science and Engineering
An International Journal Edited by Hassan II Academy of Science and Technology
The 2-class group of F_i' is cyclic of order 2, and the 2-class number of F_i' is equal to 1. Then the group G_2 is semi-dihedral.

Proof. The 2-class group of K can be generated by classes of prime ideals of K laying above the ramified primes in K/\mathbb{Q}. But in our case this is not possible, we have only one non trivial class generated by the prime ideal I_0 above the prime 2 ($2O_K = I_0^3$). We choose the second generator as the following:

Let l be a prime such that $(\frac{q_1}{l}) = (\frac{q_2}{l}) = -1$ and $(\frac{2}{l}) = (\frac{-1}{l}) = 1$. The prime l exists (see [Sim-95]) and splits completely in K/\mathbb{Q}, then there exist some ideals I_1, I_2, I_3 and I_4 of K such that $lO_K = I_1I_2I_3I_4$. The ideal I_1 is inert in F_2'/K, so by the Artin Reciprocity theorem we prove that I_1 is not principal and, if m is the odd part of the class number of K, I_1^m is also not principal.

Then $C_{K,2}$ is generated by the class of I_0 and the class of I_1^m.

The ideal I_1 is inert in F_2'/K. Also the ideal I_0 is inert in F_2'/K. So we have:

- the ideal class of I_1^m isn’t norm in F_2'/K.
- the ideal class of I_0 isn’t norm in F_2'/K.
- the ideal class of $I_0I_1^m$ isn’t norm in F_2'/K.

From these remarks and with using theorem 8, we obtain that one class from the classes of I_0, I_1^m or $I_0I_1^m$ capitulates in F_2'/K and it isn’t norm from F_2'; so F_2' is of type (B). The field F_2' of our case is the field F_1 in theorem 8, so by this theorem the group G_2 is semi-dihedral.

Example 23. Let $q_1 = 7$, $q_2 = 3$ and $d = 2q_1q_2 = 42$.

The 2-class group of of $K = \mathbb{Q}(\sqrt{42}, i)$ is of type $(2, 2)$, $F_i' = K(\sqrt{7})$, $F_2' = K(\sqrt{3})$ and $F_3' = K(\sqrt{2})$. Then only two classes of K capitulate in each extension F_i', $i = 1, 2, 3$. Moreover, in this case, the 2-class group of F_2' is cyclic of order 8 and G_2 is semi-dihedral of order 16.

A. Azizi and M. Talbi
The structure of some 2-groups
4. Case where K is a quartic number field of \mathbb{Q}

In this section, we suppose that $K = \mathbb{Q}(\sqrt{-pq(2 + \sqrt{2})})$ where p and q are primes such that $p \equiv -q \equiv 5 \pmod{8}$, in which case, the group $C_{K,2}$ is of type $(2, 2)$ (see [8]), by using the results of [12] we show that the genus field of K is $K' = K^{(2)} = K(\sqrt{p}, \sqrt{-q})$. So $K^{(2)}$ contains three extensions F_i'/K, $i = 1, 2, 3$. The aim of this section is to study the capitulation of the 2-ideal classes in F_i', $i = 1, 2, 3$, and to determine the structure of G_2. So we have: $F_1' = K(\sqrt{p})$, $F_2' = K(\sqrt{-q})$ and $F_3' = K(\sqrt{-pq})$.

Proposition 24. Let L/M be a CM-extension, Δ its Galois group, and v_0 a place of M such that the following conditions hold:

1) $C_{M,2} = 0$;

2) L and M have the same units (hence $\sqrt{-1} \notin L$);

3) $L = M(\sqrt{\beta})$ with $\beta \in M$, and $2 \nmid v_0(\beta)$.

then the natural map

$$\bigoplus_{v \in \text{Ram}(L/M), v \neq v_0} \mathbb{Z}/2\mathbb{Z} \rightarrow C_{L,2}$$

which, to a ramified place of M associates the class of its square root in L, is injective.

Proof. Let $I_{2,L}$ (resp. $I_{2,M}$) the group of fractional ideals of L tensored with \mathbb{Z}_2 (resp. M), and $P_{2,L}$ (resp. $P_{2,M}$) its sub \mathbb{Z}_2-module generated by the principal ideals. Let us analyze the image of the natural map $(I_{2,L})^{\Delta} \rightarrow (C_{L,2})^{\Delta}$. Thanks to (1), it factors into a map

$$\phi : (I_{2,L})^{\Delta}/I_{2,M} \rightarrow (C_{L,2})^{\Delta}$$

(here we embed $I_{2,M}$ into $I_{2,L}$ via the obvious map) which kernel is

$$(P_{2,L})^{\Delta}/I_{2,M} = (P_{2,L})^{\Delta}/P_{2,M} \simeq \text{coker}((L^\times)^{\Delta} \rightarrow (P_{2,L})^{\Delta}) \simeq H^1(\Delta, O_L^\times).$$

Thanks to (2), we conclude that $\ker \phi$ is of order 2. Now, because of (3), $(\sqrt{\beta})$ gives a non trivial element of $\ker \phi$, hence generates it. The claimed result followed by explicitly writing ϕ as

$$\phi : \bigoplus_{v \in \text{Ram}(L/M), v \neq v_0} \mathbb{Z}/2\mathbb{Z} \rightarrow (C_{L,2})^{\Delta}$$

Indeed, $(\sqrt{\beta})$ corresponds to the element $\bigoplus v(\beta)$ in the left hand group so that

$$\ker \phi \cap \bigoplus_{v \in \text{Ram}(L/M), v \neq v_0} \mathbb{Z}/2\mathbb{Z} = 0.$$
Corollary 25. Let $K = \mathbb{Q}(\sqrt[2]{-pq(2 + \sqrt{2})})$ where p and q are primes such that $p \equiv -q \equiv 5 \mod 8$, \mathcal{P} the prime ideal of K above p and \mathcal{Q} that above q. Then the class of \mathcal{P} (resp. \mathcal{Q}, \mathcal{PQ}) has order 2, $C_{K,2}$ is generated by the classes of \mathcal{P} and of \mathcal{Q}. Also \mathcal{P} capitulated in F_1', \mathcal{Q} capitulated in F_2' and \mathcal{PQ} capitulated in F_3'.

Proof. By the proposition 24, we find that $C_{K,2}$ is generated by the classes of \mathcal{P} and \mathcal{Q}. To show that \mathcal{P} capitulates in $K(\sqrt{p})$, it suffices to see that $\sqrt{p} \in K(\sqrt{p})$ and $(\sqrt{p}^2) = (p)$ in $K(\sqrt{p})$, so \mathcal{P} capitulates in $F_1' = K(\sqrt{p})$ and even \mathcal{Q} capitulated in $F_2' = K(\sqrt{-q})$ and \mathcal{PQ} capitulated in $F_3' = K(\sqrt{-pq})$. □

Proposition 26 ([10]). Let M a number field contains the m-th roots of unity, L a finite extension of M, $\alpha \in M^*$ and $\beta \in L^*$. We denote by P a prime ideal of M and \mathcal{P} a prime ideal of L above P. Then

$$\prod_P \left(\frac{\beta, \alpha}{\mathcal{P}} \right)_m = \left(\frac{N_{L/M}(\beta), \alpha}{P} \right)_m,$$

where the product is taken over all prime ideals of L which are over P.

Theorem 27. Let $K = \mathbb{Q}(\sqrt[2]{-pq(2 + \sqrt{2})})$ where p and q are primes such that $p \equiv -q \equiv 5 \mod 8$, then in each extension F_i', $i \in \{1, 2, 3\}$, there are exactly two classes of $C_{K,2}$ which capitulated and the group G_2 is quaternionic of order 2^m with $m > 3$.

Proof. Let ε_0 (resp. $\varepsilon_2, \varepsilon_3$) the fundamental unit of $\mathbb{Q}(\sqrt{2})$ (resp. $\mathbb{Q}(\sqrt{p}), \mathbb{Q}(\sqrt{2q})$), \mathcal{P} the prime ideal of K above p, \mathcal{Q} that above q, then, by Theorem 18, $\{\sqrt{\varepsilon_0}, \varepsilon_2, \varepsilon_3\}$ is a fundamental system of units of F_i'.

As $N_{F_i'/K}(\sqrt{\varepsilon_1\varepsilon_2\varepsilon_3^3}) = \pm\varepsilon_1$ and $N_{F_i'/K}(\varepsilon_2) = N_{F_i'/K}(\varepsilon_3) = -1$, then $E_K = N_{F_i'/K}(E_{F_i'})$. Using the Theorem 4, we find that two Classes only of $C_{K,2}$ caputlating in F_i', namely the class of \mathcal{P} and its square.

By Theorem 19, $\{\xi_3, \xi_5, \xi_7\}$ is a fundamental system of units of F_3'. Since $N_{F_3'/K}(\xi_7) = -1$ and $N_{F_3'/K}(\xi_5) = N_{F_3'/K}(\xi_3) = \varepsilon_1$, then $E_K = N_{F_3'/K}(E_{F_3'})$. By the theorem 4, we find that two classes only of $C_{K,2}$ caputlating in F_3', namely the class of \mathcal{P} and its square.

The extension F_1'/K and F_2'/K are of type B and the extension F_3'/K is of type A. Indeed, let $K' = \mathbb{Q}(\sqrt[2]{-q(2 + \sqrt{2})})$, then we have $KK' = F_1'$ and as $N_{K'/\mathbb{Q}(\sqrt{2})}(\mathcal{P}) = p$ and p is unramified in $K'/\mathbb{Q}(\sqrt{2})$, then p is inert in $K'/\mathbb{Q}(\sqrt{2})$. We find that p is inert in $K'/\mathbb{Q}(\sqrt{2})$, (Translation theorem). For this we compute the norm residue symbol $\left(\frac{p, -q\varepsilon_0\sqrt{2}}{p} \right)$. It has $p \in \mathbb{Q}$ is inert in $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and $-q\varepsilon_0\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, so using the proposition 26, we find

$$\left(\frac{p, -q\varepsilon_0\sqrt{2}}{p} \right) = \left(\frac{p, N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(-q\varepsilon_0\sqrt{2})}{p} \right) = \left(\frac{p, 2q^2}{p} \right) = \left(\frac{2}{p} \right) = -1,$$

thus p is inert in $K'/\mathbb{Q}(\sqrt{2})$, which gives that \mathcal{P} is inert in F_1'/K and since $[\mathcal{P}]$ is the only nontrivial class of $C_{K,2}$ capitulating into F_1'/K, then F_1'/K is of type B. Similarly we show that Q is inert.
in F'_3/K, which also gives that F'_3/K is of type (B), consequently, by theorem 8, two classes only of $C_{K,2}$ capitulate in F'_3. For F'_3, let $L = \mathbb{Q}(\sqrt{2 + \sqrt{2}})$, then we have $KL = F'_3$, $N_{K'/\mathbb{Q}(\sqrt{2})}(P) = p$ and p is unramified in $L/\mathbb{Q}(\sqrt{2})$, thus to show that P is inert in F'_3/K, it suffices to show that p is inert in $L/\mathbb{Q}(\sqrt{2})$, for this we compute the norm residue symbol $\left(\frac{p, \sqrt{2}}{p} \right)$. Using the proposition 26, we have $p \in \mathbb{Q}$ is inert in $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and $\varepsilon_0 \sqrt{2} \in \mathbb{Q}(\sqrt{2})$, so

$$\left(\frac{p, \varepsilon_0 \sqrt{2}}{p} \right) = \left(\frac{p, N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(\varepsilon_0 \sqrt{2})}{p} \right) = \left(\frac{p, \varepsilon_0 \sqrt{2}}{p} \right) = \left(\frac{2}{p} \right) = -1,$$

thus p is inert in $L/\mathbb{Q}(\sqrt{2})$, which gives that P is inert in F'_3/K, similarly one shows that Q is inert in F'_3/K. As PQ capitulated in F'_3, then by applying the reciprocity law of Artin, we find that F'_3/K is of type (A). Consequently, using theorem 8, the group G_2 is isomorphic to Q_m with $(m > 3)$.

Example 28. Let $K = \mathbb{Q}(\sqrt{-55(2 + \sqrt{2})})$, $F'_1 = K(\sqrt{5}), F'_2 = K(\sqrt{-11})$ and $F'_3 = K(\sqrt{-55})$, then by theorem 27 in each extension F'_i, $i \in \{1, 2, 3\}$, there are exactly two classes of $C_{K,2}$ who capitulated and the group G_2 is quaternionic of order 2^m with $m > 3$.

Remark 29. Let $K = \mathbb{Q}(\sqrt{-pq(2 + \sqrt{2})})$ and $K_0 = \mathbb{Q}(\sqrt{2}, \sqrt{-pq})$ where p and q are primes such that $p \equiv -q \equiv 5$ mod 8, then $\# G_2 = 4 h_2(K_0)$.

Proof. We have $K_2^{(1)}/F'_3$ unramified extension and as F'_3/K is of type (A), then, according to [14], $C_{F'_3,2}$ is cyclic, so F'_3 and $K_2^{(2)}$ has even Hilbert 2-class field, namely $K_2^{(2)}$, so $\# G_2 = 2 h_2(F'_3)$. Moreover $F'_3/\mathbb{Q}(\sqrt{2})$ is a normal biquadratic extension of Galois group of type $(2, 2)$ and sub-quadratic extensions K, K_0 and $L = \mathbb{Q}(\sqrt{2 + \sqrt{2}})$, by [16], we show that

$$h_2(F'_3) = \frac{1}{2} q(F'_3/\mathbb{Q}(\sqrt{2})) h_2(K) h_2(K_0) h_2(L),$$

and since $h_2(K') = 4$, $q(F'_3/\mathbb{Q}(\sqrt{2})) = 1$ and $h_2(L) = 1$ (see [24]), then $h_2(F'_3) = 2 h_2(K_0)$, which gives $\# G_2 = 4 h_2(K_0)$.

Corollary 30. Let $K = \mathbb{Q}(\sqrt{-pq(2 + \sqrt{2})})$ where p and q are primes such that $p \equiv -q \equiv 5$ mod 8 and $(\frac{2}{q}) = -1$, then in each of the extensions F'_i, for $i \in \{1, 2, 3\}$, there are exactly two classes of $C_{K,2}$ which capitulated and $G_2 \simeq Q_4$. Moreover, the 2-class group of F'_3 is cyclic of order 8, and the 2-class groups of F'_2 and F'_1 are of type $(2, 2)$.

Proof. Since $p \equiv -q \equiv 5$ mod 8, then, by Theorem 27, G_2 is quaternionic of order 2^m with $m > 3$. Let $K_0 = \mathbb{Q}(\sqrt{2}, \sqrt{-pq})$, since $(\frac{2}{q}) = -1$, then, according to [17], we have $h_2(K_0) = 4$, by the remark 29, we find that $G_2 \simeq Q_4$ and the 2-class group of F'_3 is of order 8. So the 2-class group of F'_3 is cyclic of order 8, and the 2-class groups of F'_2 and F'_1 are of type $(2, 2)$.

Frontiers in Science and Engineering
An International Journal Edited by Hassan II Academy of Science and Technology
Example 31. Let \(K = \mathbb{Q}(\sqrt{-15(2 + \sqrt{2})}) \), \(F'_1 = K(\sqrt{5}) \), \(F'_2 = K(\sqrt{-3}) \) and \(F'_3 = K(\sqrt{-15}) \), then by corollary 30 in each extension \(F'_i \), \(i \in \{1, 2, 3\} \), there are exactly two classes of \(C_{K,2} \) who capitulated. Moreover, in this case, the 2-class group of \(F'_3 \) is cyclic of order 8 and the 2-class groups of \(F'_1 \) and \(F'_2 \) are of type \((2, 2)\) and \(G_2 \) is quaternionic of order 16.

References

